Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biol Chem ; 299(3): 102990, 2023 03.
Article in English | MEDLINE | ID: covidwho-2235815

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.


Subject(s)
COVID-19 , Interferon Type I , Animals , Humans , SARS-CoV-2 , Histone Deacetylases/genetics , Interferon Type I/pharmacology , Peptide Hydrolases , Mammals , Endoribonucleases , Trans-Activators
2.
PLoS One ; 17(6): e0268454, 2022.
Article in English | MEDLINE | ID: covidwho-1892318

ABSTRACT

This study aims to investigate the binding potential of chemical compounds of Senna in comparison with the experimentally tested active phytochemicals against SARS-CoV-2 protein targets to assist in prevention of infection by exploring multiple treatment options. The entire set of phytochemicals from both the groups were subjected to advanced computational analysis that explored functional molecular descriptors from a set of known medicinal-based active therapeutics followed by MD simulations on multiple SARS-CoV-2 target proteins. Our findings manifest the importance of hydrophobic substituents in chemical structures of potential inhibitors through cross-validation with the FDA-approved anti-3CLpro drugs. Noteworthy improvement in end-point binding free energies and pharmacokinetic profiles of the proposed compounds was perceived in comparison to the control drug, vizimpro. Moreover, the identification of common drug targets namely; AKT1, PTGS1, TNF, and DPP4 between proposed active phytochemicals and Covid19 using network pharmacological analysis further substantiate the importance of medicinal scaffolds. The structural dynamics and binding affinities of phytochemical compounds xanthoangelol_E, hesperetin, and beta-sitosterol reported as highly potential against 3CLpro in cell-based and cell-free assays are consistent with the computational analysis. Whereas, the secondary metabolites such as sennosides A, B, C, D present in higher amount in Senna exhibited weak binding affinity and instability against the spike protein, helicase nsp13, RdRp nsp12, and 3CLpro. In conclusion, the results contravene fallacious efficacy claims of Senna tea interventions circulating on electronic/social media as Covid19 cure; thus emphasizing the importance of well-examined standardized data of the natural products in hand; thereby preventing unnecessary deaths under pandemic hit situations worldwide.


Subject(s)
COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , SARS-CoV-2 , Sennosides
3.
Front Vet Sci ; 8: 794228, 2021.
Article in English | MEDLINE | ID: covidwho-1590783

ABSTRACT

Spike (S) glycoprotein is an important virulent factor for coronaviruses (CoVs), and variants of CoVs have been characterized based on S gene analysis. We present phylogenetic relationship of an isolated infectious bronchitis virus (IBV) strain with reference to the available genome and protein sequences based on network, multiple sequence, selection pressure, and evolutionary fingerprinting analysis in People's Republic of China. One hundred and elven strains of CoVs i.e., Alphacoronaviruses (Alpha-CoVs; n = 12), Betacoronaviruses (Beta-CoVs; n = 37), Gammacoronaviruses (Gamma-CoVs; n = 46), and Deltacoronaviruses (Delta-CoVs; n = 16) were selected for this purpose. Phylogenetically, SARS-CoV-2 and SARS-CoVs clustered together with Bat-CoVs and MERS-CoV of Beta-CoVs (C). The IBV HH06 of Avian-CoVs was closely related to Duck-CoV and partridge S14, LDT3 (teal and chicken host). Beluga whale-CoV (SW1) and Bottlenose dolphin-CoVs of mammalian origin branched distantly from other animal origin viruses, however, making group with Avian-CoVs altogether into Gamma-CoVs. The motif analysis indicated well-conserved domains on S protein, which were similar within the same phylogenetic class and but variable at different domains of different origins. Recombination network tree indicated SARS-CoV-2, SARS-CoV, and Bat-CoVs, although branched differently, shared common clades. The MERS-CoVs of camel and human origin spread branched into a different clade, however, was closely associated closely with SARS-CoV-2, SARS-CoV, and Bat-CoVs. Whereas, HCoV-OC43 has human origin and branched together with bovine CoVs with but significant distant from other CoVs like SARS CoV-2 and SARS-CoV of human origin. These findings explain that CoVs' constant genetic recombination and evolutionary process that might maintain them as a potential veterinary and human epidemic threat.

4.
J Mol Struct ; 1253: 132242, 2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1586963

ABSTRACT

The recent outbreak of coronavirus disease (COVID-19) has rampaged the world with more than 236 million confirmed cases and over 4.8 million deaths across the world reported by the world health organization (WHO) till Oct 5, 2021. Due to the advent of different variants of coronavirus, there is an urgent need to identify effective drugs and vaccines to combat rapidly spreading virus varieties across the globe. Ferrocene derivatives have attained immense interest as anticancer, antifungal, antibacterial, and antiparasitic drug candidates. However, the ability of ferrocene as anti-COVID-19 is not yet explored. Therefore, in the present work, we have synthesized four new ferrocene Schiff bases (L1-L4) to understand the active sites and biological activity of ferrocene derivatives by employing various molecular descriptors, frontier molecular orbitals (FMO), electron affinity, ionization potential, and molecular electrostatic potential (MEP). A theoretical insight on synthesized ferrocene Schiff bases was accomplished by molecular docking, frontier molecular orbitals energies, active sites, and molecular descriptors which were further compared with drugs being currently used against COVID-19, i.e., dexamethasone, hydroxychloroquine, favipiravir (FPV), and remdesivir (RDV). Moreover, through the molecular docking approach, we recorded the inhibitions of ferrocene derivatives on core protease (6LU7) protein of SARS-CoV-2 and the effect of substituents on the anti-COVID activity of these synthesized compounds. The computational outcome indicated that L1 has a powerful 6LU7 inhibition of SARS-CoV-2 compared to the currently used drugs. These results could be helpful to design new ferrocene compounds and explore their potential application in the prevention and treatment of SARS-CoV-2.

5.
IOP Conference Series. Earth and Environmental Science ; 910(1), 2021.
Article in English | ProQuest Central | ID: covidwho-1528145

ABSTRACT

Citrus (oranges, lemon, mandarin, limes and tangarines) has significant nutritional value in human foods. It is rich source of vitamin C, sugar, organic acids, amino acids, minerals like Ca, Mg and various other phytochemicals (flavonoids, hesperidin etc) compounds that are responsible for good health. Citrus is growing in more than one forty countries of the world including Pakistan, Brazil, China, Mexico, USA, Spain and India.Viral infection and inflammation triggers the production of oxygen free radicals and these radicals severely damage the cells, however hesperidin and vitamin C is reported to counteract these damages. Intake of plentiful citrus fruits is one of amongst the many possible approaches to prevent from COVID-19 role of nutrition. Citrus fruit are very rich in important substances with a potential beneficial for health such as modulating the immunity and in protecting cells from oxidative stress related with infection. Flavonoids and hesperidin two major key compound found in citrus have affinity to treat Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hesperidin has a low binding energy, both with the coronavirus “spike” protein, and with the fundamental protease that alters the primary proteins of the virus (pp1a and ppa1b) into the complex liable for viral replication hence these compounds could work as an antiviral function. Pakistan is amongst top ten citrus producers in the world. Citrus is one of the best commercial fruits of Pakistan cultivated on a large area, however, in Pakistan yield of citrus has been affected due to attack of insects and pathogens (nematode, fungal, bacterial and viral) which causes heavy losses both in quality and quantity. The purpose of this article is to focusing on the controlling the pathogens of citrus to boost citrus production in country as these beneficial plants are well known for its essential vitamin and flavonoid contents to control COVID-19.

6.
Pakistan Journal of Zoology ; 53(3):1119, 2021.
Article in English | ProQuest Central | ID: covidwho-1197965

ABSTRACT

ABSTRACT A variety of infectious public health problems are prevailing in the world. Among these, epidemics of Severe Acute Respiratory Syndrome (SARS), H1N1 influenza and Middle East Respiratory Syndrome corona virus (MERS-Co V) emerged as very important issues during last three decades as these infections caused quite large number of human deaths worldwide. Coronaviruses are single-stranded positive sense RNA viruses which mainly in past were considered responsible for high percentage of (around 30%) of common cold/flu cases. Viruses causing SARS, MERS and COVID-19 are members of family Coronavirdae. World Health Organization (WHO) reported that the novel Cov-19 virus infection was first diagnosed in Wuhan, Hubei Province, China during December 2019. Initially the virus was named as nCoV-19 and later disease due to this virus was named as COVID-19, and recently named as Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2) by the International Committee on Taxonomy of Viruses. This new coronavirus was found to have 86.9% homology to a bat corona virus and hence it was suspected to have been originated from bats. Till 15th January 2021, the COVID-19 infection has been reported from 219 countries. It has caused over 20 million deaths in humans around the globe. Countries reporting very high death/infection rates include USA (393,948/23,617,815), Brazil (206,009/5,257,459), Mexico (136,917/1,571,901), India (153,000/10,596,442), UK (84,767/3,211,576), France (69,031/2,830,842), Russia (63,940/3,495,816) and Italy (80,326/2,319,036). Worldwide a total of over 96,750,700 COVID-19 cases have so far been reported. As reported earlier this pandemic has hit almost every country worldwide causing exceptionally high morbidity and mortality. Amongst the South Asian countries India is worst hit by this deadly COVID-19. Pakistan's neighboring Iran is also very badly infected and reported 57,057 deaths of 1,348,316 infected people. In Pakistan 52,411,930 confirm cases of COVID-19 and around 11,000 deaths are reported in various region of the country.

7.
Anal Chem ; 92(15): 10196-10209, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-612210

ABSTRACT

Molecular diagnosis of COVID-19 primarily relies on the detection of RNA of the SARS-CoV-2 virus, the causative infectious agent of the pandemic. Reverse transcription polymerase chain reaction (RT-PCR) enables sensitive detection of specific sequences of genes that encode the RNA dependent RNA polymerase (RdRP), nucleocapsid (N), envelope (E), and spike (S) proteins of the virus. Although RT-PCR tests have been widely used and many alternative assays have been developed, the current testing capacity and availability cannot meet the unprecedented global demands for rapid, reliable, and widely accessible molecular diagnosis. Challenges remain throughout the entire analytical process, from the collection and treatment of specimens to the amplification and detection of viral RNA and the validation of clinical sensitivity and specificity. We highlight the main issues surrounding molecular diagnosis of COVID-19, including false negatives from the detection of viral RNA, temporal variations of viral loads, selection and treatment of specimens, and limiting factors in detecting viral proteins. We discuss critical research needs, such as improvements in RT-PCR, development of alternative nucleic acid amplification techniques, incorporating CRISPR technology for point-of-care (POC) applications, validation of POC tests, and sequencing of viral RNA and its mutations. Improved assays are also needed for environmental surveillance or wastewater-based epidemiology, which gauges infection on the community level through analyses of viral components in the community's wastewater. Public health surveillance benefits from large-scale analyses of antibodies in serum, although the current serological tests do not quantify neutralizing antibodies. Further advances in analytical technology and research through multidisciplinary collaboration will contribute to the development of mitigation strategies, therapeutics, and vaccines. Lessons learned from molecular diagnosis of COVID-19 are valuable for better preparedness in response to other infectious diseases.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Betacoronavirus/chemistry , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques , False Negative Reactions , High-Throughput Nucleotide Sequencing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pandemics , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Specimen Handling/methods , Viral Load , Viral Proteins/analysis , Wastewater/analysis
8.
Eur J Pharm Sci ; 151: 105387, 2020 Aug 01.
Article in English | MEDLINE | ID: covidwho-343755

ABSTRACT

The emergence and rapid expansion of the coronavirus disease (COVID-19) require the development of effective countermeasures especially a vaccine to provide active acquired immunity against the virus. This study presented a comprehensive vaccinomics approach applied to the complete protein data published so far in the National Center for Biotechnological Information (NCBI) coronavirus data hub. We identified non-structural protein 8 (Nsp8), 3C-like proteinase, and spike glycoprotein as potential targets for immune responses to COVID-19. Epitopes prediction illustrated both B-cell and T-cell epitopes associated with the mentioned proteins. The shared B and T-cell epitopes: DRDAAMQRK and QARSEDKRA of Nsp8, EDMLNPNYEDL and EFTPFDVVR of 3C-like proteinase, and VNNSYECDIPI of the spike glycoprotein are regions of high potential interest and have a high likelihood of being recognized by the human immune system. The vaccine construct of the epitopes shows stimulation of robust primary immune responses and high level of interferon gamma. Also, the construct has the best conformation with respect to the tested innate immune receptors involving vigorous molecular mechanics and solvation energy. Designing of vaccination strategies that target immune response focusing on these conserved epitopes could generate immunity that not only provide cross protection across Betacoronaviruses but additionally resistant to virus evolution.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Drug Design , Epitopes/immunology , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Zoonoses/immunology , Amino Acid Sequence , Animals , B-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus RNA-Dependent RNA Polymerase , Epitope Mapping , Glycoproteins/immunology , Humans , Models, Molecular , Molecular Dynamics Simulation , Receptors, Immunologic/chemistry , Receptors, Immunologic/immunology , T-Lymphocytes/immunology , Viral Nonstructural Proteins/immunology , Viral Proteins/chemistry , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL